Smoothed Analysis of the Squared Euclidean Maximum-Cut Problem

نویسندگان

  • Michael Etscheid
  • Heiko Röglin
چکیده

It is well-known that local search heuristics for the MaximumCut problem can take an exponential number of steps to find a local optimum, even though they usually stabilize quickly in experiments. To explain this discrepancy we have recently analyzed the simple local search algorithm FLIP in the framework of smoothed analysis, in which inputs are subject to a small amount of random noise. We have shown that in this framework the number of iterations is quasi-polynomial, i.e., it is polynomially bounded in n and φ, where n denotes the number of nodes and φ is a parameter of the perturbation. In this paper we consider the special case in which the nodes are points in a d-dimensional space and the edge weights are given by the squared Euclidean distances between these points. We prove that in this case for any constant dimension d the smoothed number of iterations of FLIP is polynomially bounded in n and 1/σ, where σ denotes the standard deviation of the Gaussian noise. Squared Euclidean distances are often used in clustering problems and our result can also be seen as an upper bound on the smoothed number of iterations of local search for min-sum 2-clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Maximum Dynamic Flow Problem under the Sum-Type Weighted Hamming Distance

Inverse maximum flow (IMDF), is among the most important problems in the field ofdynamic network flow, which has been considered the Euclidean norms measure in previousresearches. However, recent studies have mainly focused on the inverse problems under theHamming distance measure due to their practical and important applications. In this paper,we studies a general approach for handling the inv...

متن کامل

Smoothed Analysis of the 2-Opt Heuristic for the TSP: Polynomial Bounds for Gaussian Noise

The 2-opt heuristic is a very simple local search heuristic for the traveling salesman problem. While it usually converges quickly in practice, its running-time can be exponential in the worst case. In order to explain the performance of 2-opt, Englert, Röglin, and Vöcking (Algorithmica, to appear) provided a smoothed analysis in the so-called one-step model on d-dimensional Euclidean instances...

متن کامل

Worst-Case and Smoothed Analysis of k-Means Clustering with Bregman Divergences

The k-means algorithm is the method of choice for clustering large-scale data sets and it performs exceedingly well in practice. Most of the theoretical work is restricted to the case that squared Euclidean distances are used as similarity measure. In many applications, however, data is to be clustered with respect to other measures like, e.g., relative entropy, which is commonly used to cluste...

متن کامل

A Smoothed Maximum Score Estimator for Multinomial Discrete Choice Models

We propose a semiparametric estimator for multinomial discrete choice models. The term “semiparametric” refers to the fact that we do not specify a particular functional form for the error term in the random utility function and we allow for heteroskedasticity and serial correlation. Despite being semiparametric, the rate of convergence of the smoothed maximum score estimator is not affected by...

متن کامل

Worst-Case and Smoothed Analysis of the k-Means Method with Bregman Divergences

The k-means algorithm is the method of choice for clustering large-scale data sets and it performs exceedingly well in practice despite its exponential worst-case running-time. To narrow the gap between theory and practice, k-means has been studied in the semi-random input model of smoothed analysis, which often leads to more realistic conclusions than mere worst-case analysis. For the case tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015